В настоящее время в продаже появилось огромное количество солнечных батарей и модулей. К наиболее распространенным можно отнести модули, выполненные на основе поликристаллического и монокристаллического кремния, представляющие собой пластины кремния, смонтированные на плате из фольгированного стеклотекстолита, на оборотной стороне которых сформированы контактные площадки с маркировкой полярности. Для защиты от атмосферных осадков и воздействий они покрыты специальным защитным слоем из прозрачного пластика, который, в свою очередь, обладает очень высокой степенью оптической прозрачности. Панели из монокристаллического кремния имеют неплохой коэффициент полезного действия (КПД) 11-13%, срок их службы составляет до 25 лет. Однако, они значительно снижают мощность при затемнении и облачности, батарея, выполненная из поликристаллического кремния, имеет меньший КПД, около 7-9%, и долговечность примерно 10 лет, однако, в отличие от батарей из монокристаллического кремния, незначительно снижают мощность при затемнении и облачности.
Конечно перечисленные выше солнечные модули имеют хорошие показатели и характеристики своей работы, однако, на мой взгляд, они слишком дороги и не каждому радиолюбителю доступны. Поэтому, чтобы сэкономить средства, а также понять принцип ее работы, и заодно разобраться во всех тонкостях, я решил поделиться своим опытом. Данная батарея должна служить автономным источником для питания маломощных радиолюбительских конструкций.
Для изготовления самодельной солнечной батареи воспользуемся внутренним фотоэффектом p-n перехода полупроводникового прибора (диода, транзистора). Его работа основывается на зависимости прямого тока от степени освещенности p-n перехода. Оказывается, что чем лучше освещенность кристалла полупроводника, тем интенсивнее электроны и дырки проникают через p-n переход. А такая зависимость дает возможность преобразовывать световое излучение в электрический ток. При этом сам полупроводник становится источником электрического тока. Сила тока и электрическая движущая сила (ЭДС) у такого полупроводника зависит от нескольких факторов, а именно: материала, из которого выполнен полупроводник (кремний, германий и др.); площади поверхности p-n перехода; ну и конечно, степени освещенности. Однако, сила тока у одного фототодиода ничтожно мала, и он не способен обеспечить питание малогабаритной аппаратуры, поэтому нужно собирать модули из десятков таких полупроводниковых приборов, тогда будет желаемый эффект. Большим достоинством такого источника является то, что элементы, входящие в состав батареи, не боятся короткого замыкания. Каждый из них предназначен для выдачи определенной величины силы тока при некотором электрическом напряжении.
В качестве фотоэлемента можно использовать диоды, транзисторы, и другие полупроводники, у которых удастся открыть p-n переход, и он будет достаточной площади. Остановимся на диодах. В своей конструкции я применил кремниевые диоды КД202, внешний вид, чертеж и габаритные размеры:
Данный тип диода имеет плоскостное конструктивное исполнение. В таком типе диода на пластину из полупроводника напаяна небольшая капелька вещества, которая может быть или донором или акцептором. В месте спаивания этой капельки собственно и образуется p-n переход. Я надеюсь, что такие же диоды еще остались в наличии и отыщутся в старых запасах радиолюбителей, которые читают данную статью. При отсутствии указанного типа диода, возможно использование Д226, Д237.
Для того, чтобы превратить диод в источник фототока, необходимо аккуратно добраться до кристалла полупроводника, чтобы на p-n переход мог интенсивно попадать солнечный свет. Для этой цели проделаем следующее…
Взяв диод в руки, для выполнения правил техники безопасности перед будущими действиями с ним, его необходимо закрепить в слесарных тисках за фланец. После этого плоскогубцами или ножницами по металлу, а в крайнем случае зубилом, необходимо отрезать вывод диода. Помятый при выполнении данной процедуры остаток вывода в виде трубочки желательно аккуратно расправить, что впоследствии даст возможность без проблем освободить медный провод, который припаян к p-n переходу, и является собственно положительным контактом.
На следующем этапе следует снять с диода фланец. Для этого, как показано, необходимо приложить к сварному шву на диоде, который обозначен на рисунке, острый предмет (нож, отвертка и др.), и при этом потихоньку несильно ударяя по тыльной стороне такого предмета и поэтапно проворачивая диод в тисках, необходимо удалить защитный фланец. При выполнении данной процедуры нужно быть предельно внимательным и следить за тем, чтобы кончик острого предмета не проходил очень глубоко вовнутрь по сварному шву между диодом и пока еще не снятым фланцем. Это условие выполнять следует обязательно, во избежание повреждения кристалла. Теперь, когда сварочное соединение раскрыто, можно удалить фланец. Если все действия проделаны правильно, то результат выполненной работы должен выглядеть так:
Данные действия описаны для одного диода, для всех же остальных, которые будут составлять элементную базу батареи, действия аналогичные. Хотелось бы отметить, что приловчившись снимать фланец и тем самым открывать кристалл полупроводника по данной методике, на один диод будет уходить в среднем около минуты, поэтому все очень просто, нужно просто немножко потренироваться и подобрать для себя удобную оснастку.
Принципиальная схема солнечной батареи:
Как видно из рисунка, батарея состоит из пяти модулей М1-М5 по 11 диодов в каждом. Для максимального увеличения выходного тока, который отдается во внешнюю цепь, используемые диоды одинаковой серии необходимо соединять смешанно, то есть батарея собирается на основе групп, которые соединены в свою очередь последовательно, и составляются из одинаковых соединенных параллельно элементов. При такой схеме включения генерируемые диодами напряжения более равномерно распределяются по всей площади солнечной батареи. Благодаря этому, незначительное частичное затемнение части диодов не принесет большого снижения напряжения и силы тока в самодельной солнечной батарее. Конечно, количество модулей может быть другим, здесь работает принцип «чем больше — тем лучше», только очень важно, чтобы они были соединены именно таким образом, как указано на схеме. Описываемая самодельная солнечная батарея на основе 55 полупроводниковых диодов КД202, состоящая из пяти модулей по 11 параллельно соединенных диодов в каждом, на солнце генерирует напряжение до 5 В при силе токе примерно в 2,5 мА. Для питания малогабаритного радиоприемника, эпектронных часов и другой маломощной аппаратуры вполне достаточно будет. Также следует помнить, что напряжение на холостом ходу (без нагрузки), возникающее в полупроводнике, может немного изменяться при переходе от одного элемента к другому, даже если они одной серии, и может достигать значения до 0,5 В. Эта величина практически не зависит от размеров p-n перехода. А вот сила тока в полупроводниках, которые и составляют солнечную батарею, зависит от интенсивности освещения кристалла, а также размера активной рабочей площади в применяемом полупроводнике.
Теперь хотелось бы рассказать о монтаже элементов, составляющих солнечную батарею. Заранее подготовленные диоды необходимо установить на плате из стеклотекстолита.
Пример установки, на котором показано расположение в качестве примера четырех диодов:
Я уверен, вам не составит трудностей расположить такое количество диодов, которые они захотят применить в своих конструкциях солнечной батарей. Я же при помощи данного рисунка показал основной принцип правильного монтажа. Между собой положительные выводы, отходящие от кристаллов диодов необходимо соединить проводом из меди. При монтаже этих проводов от пайки лучше отказаться, так как высокой температурой можно повредить p-n переход. Описываемые диоды данной серии изначально включают в себя токосъемные болтовые контакты (в нашем случае они служат выводами отрицательной полярности) с резьбой М5. Поэтому для их соединения между собой, после установки в посадочные отверстия следует накрутить на них гайки М5. Между гайкой и платой провести оголенный медный провод или даже обкрутить хотя бы раз, а затем затянуть гайкой.
После монтажа всех элементов монтажную плату можно установить в корпус с защитной прозрачной крышкой, например, из оргстекла. Также в корпусе необходимо проделать небольшое отверстие для вывода шнура питания наружу, а выключатель никакой не потребуется.
Транзисторы также могут служить фотоэлектрическими преобразователями. Для этой цели достаточно удалить их непрозрачную оболочку. Неисправные транзисторы также можно благополучно использовать в качестве источников напряжения, но при одном условии, что у них не было короткого замыкания между коллектором и базой или эмиттером и базой. Чем более мощный транзистор, гем лучший из него получится фотоэлемент. Если же читатели захотят изготовить солнечную батарею на основе транзисторов, то можно порекомендовать следующие типы: П201, П202, П203, П416, П422, КТ620А, КТ3108А, зарубежный TG50 (отдает ток до 0,5 мА при напряжении около 1.5 В). При использовании зарубежного транзистора TG70 можно получить в ток пределах 3 мА при напряжении 1,5 В, те же самые показатели относятся и к отечественным транзисторам П201…203.
После выбора транзистора в металлическом корпусе, например, П416, у него необходимо аккуратно спилить верхнюю часть шляпки по линии 1-2, или же удалить весь корпус, выполняя те же действия, что и с диодом при снятии у него фланца. Также желательно проверить сначала все транзисторы, которые будут использованы в качестве элементов солнечной батареи. Воспользуемся для этой цели мультимегром, установив в нем режим миллиамперметра в диапазоне до 20 мА. Затем поднесем щупы к выводам выбранного транзистора, а именно между коллектором или эмиттером и базой. При этом плюсовой щуп, исходящий от мультиметра подключаем к коллектору или эмиттеру, а отрицательный щуп подводим к базе транзистора. При хорошем освещении прибор покажет ток примерно 0,15-0,3 мА. После этого необходимо перевести наш измерительный прибор в режим измерения напряжения, и выбрать диапазон до 2 В. И так же измерить, но уже напряжение между коллектором (или эмиттером) и базой. В данном случае мультиметр должен показать значение около 0.3 В.
Примерная часть схемы солнечной батареи с применением транзисторов следующая:
Вместо эмиттера можно также использовать и коллектор, кому как больше нравится. Естественно, что транзисторов может быть сколько угодно, а значит и модулей тоже.
Следует помнить о необходимости соблюдения температурного режима солнечной батареи, го есть оберегать ее от перегрева на солнце. При нагреве кристалла полупроводника на каждый последующий градус Цельсия, начиная от 25, он начинает терять в своём напряжении около 0,002 В, то есть примерно 0,4 % на градус. В погожий солнечный день кристалл и собственно р-п переход может нагреваться до температуры 40-80 °С, при этом температурном воздействии происходит потеря в среднем 0,06…0,09В на каждом элементе, входящем в состав солнечной батареи. Это одна из важнейших причин снижения КПД полупроводников самодельной солнечной батарем.
Самое эффективное время для работы солнечного модуля в период весны и лета — примерно с 9 до 18 часов, осенью и зимой, конечно, этот период сокращается. В другое светлое время суток ток солнечной батареи уменьшается. Падает ток, генерируемый солнечной батареей, и в пасмурную погоду или в тени. Некоторая ориентировка солнечной батареи относительно положения Солнца помогает увеличить генерируемый ток. Напряжение у такой самодельной солнечной батареи будет равняться сумме напряжений на всех составляющих ее полупроводниках. Ток, отдаваемый этой батареей, будет ограничен током наихудшего полупроводника.
"Круглый стол" по воскресеньям на частоте 3606кГц в 9.00 МСК проводит R3LDQSL бюро работает по пятницам с 18.30 до 20.00 час. г. Смоленск ул. Кирова 22"б" правое крыло 3 этаж (здание ДОСААФ).